COMP/SS

a FormFactor users' group conference

Overcoming the Wafer Test Challenges of Advanced Power Semiconductor Devices (GaN, SiC, Si)

Peter Andrews Director, DC Market Segment FormFactor

Power Semiconductor Device Definition

- Semiconductor devices used as Switches or Rectifiers. in power electronic circuits
- Also known as power device, power IC, power module
- Some common power devices:
 - power diode
 - power MOSFET
 - IGBT (Insulated Gate)
- Device Measurements
 - Breakdown voltage
 - Low leakage measurement @ high V
 - On-resistance (Rds-on)
 - High current
 - Rise and fall times for switching
 - Safe-operating area (thermal dissipation / "latch-up")
 - Thermal resistance

COMP/SS

Si

Wide Band-gap Materials

- Newer SiC & GaN material devices are "disrupting" the older Si devices
 - 1. Higher power (voltage, current, breakdown)
 - 2. Greater efficiency (higher switching speed)

Material property	Si	SiC	GaN
Band Gap (eV)	1.1	3.2	3.4
Critical field 10 ⁶ V/cm	3	3	3.5
Electron Mobility (cm ² /V-se)	1450	900	2000
Electron Saturation Velocity (10 ⁶ cm/sec)	10	22	25
Thermal Conductivity (Watts/cm ² K)	1.5	5	1.3

Power Device Market (2015-2023 by type of device)

FORMFACTOR

Yole Développment - PCIM 2018 - GaN and SiC challenges

Power Semiconductors (Applications and Technologies)

Operating frequency (Hz)

Power Semiconductors (Applications and Technologies)

Operating frequency (Hz)

GaN / SiC Technology in the real world

GaN / SiC Devices	Technology benefit	Applications
Devices can be smaller	<i>Smaller packaging</i> into consumer products	
Devices can support higher temp	<i>Increaser reliability</i> in Automotive EV	
Devices are more efficient (higher switching speed)	<i>Lower energy loss / heat</i> in industrial uses	Image: state of the state o

Package vs On-Wafer

On-wafer High Power Test

- Industry Needs
 - Material Characterization: SiC, GaN, Si, and SOI versions
 - Device Characterization: on-wafer accuracy (SiC, GaN, Si)
 - Reliability tests higher operating V / I, higher temps
 - Commercial: reduce Cost Of Test (pkg to wafer)
 - Production prober for "Specialty high perf. devices"
- Key on-wafer Measurement Needs
 - Accurate/consistent Rds data on Single / Volume wafers
 - Full temperature support -55....+300/400oC
 - Voltages up to 10kV DC, Currents up to 600A
 - Support for engineering probes AND probe cards
 - Easy setup for lateral and vertical devices
 - Safe thin wafer autoloading
 - Low Inductance for dynamic power tests

Wafer-Level Test Challenges

- Safety for operator and system
- System isolation for high voltage applications
- Low resistance contacts and path for high current applications (chuck & probe tips)
- High-voltage arcing
- Thin-wafer handling
- Integration of different measurement instruments with emphasis on measurement accuracy and safety requirements
- High temperatures
- Low inductance for high switching speeds

Up to 10kV / 600A with thin-wafer loading TESLA200 Accurate Rds(on) with constant Rc at ALL temperatures with Contact Intelligence Power Semiconductor Modular Semi /Full-auto upgradeable Anti-arcing solutions for wafer and probes **Probing System** New high performance eVue 4 Digital New Velox software with easy operation imaging system, and programmable "Guided mode" (version 2.3) microscope travel increase die-to-die test speed Auto Wafer loader (4,6,8") enables testing 50 wafers with 2nd Cassette TUV certified high power safety enclosure Thin/warped wafer handling (50um) Integrated High Thermal Stability with top-lift end effector (HTS) for enhanced probe contact Automated probe cleaning Next generation MicroChamber and Wafer Quick Access Port for easy access Top-hat covers increased throughput Patented TESLA Chuck Technologies Easy MicroChamber / wafer access FemtoGuard Triax Coax, and High Current Multi-speed manual XY controls 3kV low cost versions Wide temp -55..+300oC Precision wafer stage – 2x faster Specialty chucks for +400oC, and Integrated vibration isolation low inductance/Cap(res) for UIS & system electronics New manual hot wafer unload/load Small footprint

TESLA Probing System Solutions

Probing Challenge: Measuring Rds(on) for Vertical Devices

- Need high-current pulse on the source/drain
- Need Kelvin measurement capability
- Backside drain/source require minimal contact resistance (Rc) between the wafer and chuck for accurate Rds(on) measurement
- Need wafer Rc uniformity for accurate device statistical data

Low Resistance wafer contact (Rc)

- Tesla chucks with MicroVac
 - Patented technology
 - 2nd generation version for thinned wafers
 - Stronger vacuum system for uniform wafer "hold down"
 - Uniform low contact resistance
 - BENEFIT: More accurate test data

TESLA	MicroVac Triax chucks	2nd Gen. MicroVac Triax chucks
Chuck Surface	Flat	Flat
Plating	Gold (Au)	Gold (Au)
Vacuum System	Standard	Next Generation
Vac. holes	495	495
Hole size	400um	200um
Supply channel	Standard	Flow optimized
Tyco support	Yes	Yes
Tyco vacuum	Reduced	Full

Case Study: Package vs On-wafer + low Rc wafer chuck

High Forward Current Characterization Tests at Wafer Level on Vertical **Discrete Power Technology** Yoann BUVAT^{1,2}, Emilien BOUYSSOU^{1,2}, Gaël GAUTIER² ¹STMicroelectronics, Tours, France ²GREMAN UMR-CNRS 7347, Université de Tours, INSA Centre Val de Loire, Tours, France université ife.augmented COMPASS 2018 Feasibility up to 200A Experimental - New FormFactor™ chuck technology for High Power Tesla Probe station 🕎 Sense voltage orce current i00µs pulse time 250ms pulse period (TON + TOFF) (Ton) 100us integration time 400µs delav T 2x8 fingers UHP probe B1505 Keysight Tech MicroVac© technology Vehicle tests : Low contact resistance Bipolar diode 1200V - 200A 24 COMPASS 2018

Probing Challenge: Low Leakage Measurements at HV

Situation	Engineers need to understand device leakage current behavior at high voltages.
Solution	TESLA200 provides a patented High Power triaxial chuck system for measuring leakage levels as low as 10fA.
Benefits	Helps engineers understand their devices leakage behavior for currents under the 10 pA range and to increase the application value of their devices

High-Voltage Chuck Port (Patent Pending)

- Chuck side connector:
 - 3 kV Triax, 10 kV Coax
 - Force and Sense connection, Femto Amp leakage
 - direct connection to service loop, sits on bridge, easily accessible
 - Interlock connection of safety

High-Voltage Chuck Connection Cable

- Instrument side connector:
 - 3 kV Triax , 10 kV Coax (max), voltage rating depends on end connector
 - Force and Sense connection
 - Available end connector: HV Triax, Std Triax, CMI Triax, BNC, Banana, SHV
 - Shorting and Floating plugs
 - Interlock connection of safety

Probing Challenge: Probe/Pad Burnout @ High-current

- Catastrophic damage on both the probe and pad
- Device/Pad could heating at the tip due to probe contact resistance at high-current measurement

 $Id^2 x (Rds + Rc) = Total Device Heating$

Solution: Reduce probe contact resistance

- Tesla's HCP high current Probe
- Novel Multi-finger design
 - Reduced contact resistance
 - Good distribution of current
 - Minimal pad damage
 - Emulate Multiple bond wires

- Suitable for all pad material (tungsten tips)
- Replaceable Probe Tips
- Up to 10A DC/60A Pulsed (1ms)

ORMFACTOR

22

Probing Challenge: Utilizing test equipment on-wafer

- Ultra High Voltage / Current
 - Keysight B1505A Power Device Analyzer 3KV/40A
 - Keysight N1265A UHC Expander/Fixture 600A*
 - Keysight N1268A UHV Expander 10KV
 - Requires N1254A-524 (Prober Interface)

Extended Current Capabilities

• Complete Probe Solutions covering entire 10kV / 600A measurement range

ORMFACTOR™ 24

Extended Current Capabilities / Integration

B1505A Gen2 UHCE/UHVE

• N1265A UHCE and N1268A UHVE are optional

3KV, 300A Lateral Connection diagram

Probing Challenge: Increase HC/HV test throughput

- Reduce test time to measure both high voltage and high current on the same device
- Reduce setup time (HV & HC)
- Reduce time / errors with potential die mismatching

ORMFACTO

27

Solution: UHP Probe

A single probe to use in both high-voltage and high-current applications – no need to change probes and measurement setups

- Up to 300 A per probe (thus 600 A by a pair) or 10 KV on one probe
- Minimal damage to the wafer due to probing
- High-current testing needs high probe forces to reduce contact resistance
- Special tip shape, pad penetration is minimal

Solution: UHP Probe

Higher test throughput via reduced testing time

- Up to 100% throughput improvement when reducing two wafer runs to one
- Additional savings by one setup only

Probing Challenge: Using HV Probe cards without arcing

Solution with TESLA200 and T.I.P.S HV probecards

T.I.P.S. Probe Cards	Non-thermal	Engineering High Temp	Production High Temp
Max Voltage	10,000V	10,000V	10,000V
Max temperature	85°C	200°C	150°C
Anti-arcing pressure chamber	Yes	Yes	Yes
Air seal to wafer	Hovering (~80um gap)	Contacting	Hovering (~80um gap)

Cambridge University Case Study – Before

- No thermal capability
- Upper voltage limited by safety concerns
- No ability to measure substrate currents accurately
- Upper current capability limited by probe and station service loop
- Not possible to switch from High voltage low current to High current low voltage for Current Collapse measurements

• Manual

Cambridge Case Study – After

- Implementation with B1505, UHCE and UHVE allows automatically switched testing for high voltage and high current setups
- Chuck currents can be accurately resolved
- Safe and easily accessible system
- 10KV capability
- Current collapse for GaN devices
- Semi automatic for rapid data collection

Current collapse measurements

- In some devices, the on state Ron resistance is degraded, after a high voltage Vdd has been applied in the 'off' state
- Device recovers to expected values, but takes time after going into on state
- Measuring this transition is of interest

N1267A Fast Switch – Current Collapse Measurements

To Connect HVSMU/HCSMU Fast Switch

Current collapse measurements

Summary

- Applications using Power Semiconductors see continual strong growth
- GaN and SiC devices enable increased performance over Si
- On-wafer testing of GaN & SiC devices have additional challenges for
 - Higher Voltage / Current
 - High temperature
 - Switching speed
- TESLA200 provides complete solution
 - for high power GaN, SiC, & Si device testing @ temperature
 - with seamless integration with UHV / UHC implementations from Keysight
 - and safe, accurate, device data collection

COMP/SS

a FormFactor users' group conference

Thank You

