

Too Hot To Test? Advanced Thermal Management

Ferdinand Wimmer / Markus Kindler ATT Systems GmbH Nov-13, 2021

Wafer Test Trends – Too Hot To Test?

Testing of high power IC's (i.e. Al/Processors) + 1TD DRAM is approaching an inflection point

High power density of DUT's need better thermal chuck to dissipate the peak power at a wide temperature range

inaccurate test results

Active temperature control solutions are required: Low Thermal Resistance – MultiSense Temp Control – Liquid Cooling

ATT's Low Thermal Resistance (LTR) chuck technology addresses these challenges

- Standard chucks are not able to sense temp increase and to dissipate the applied energy device damage, burned probes,
- Heterogenous integration will further increase power densities:>10X with processor + 8-die HBM stacked on a base wafer

What is a Thermal Chuck System?

Air Cooled

-40C to +200C

-60C to +200C

Modular Base Chuck System

Universal chuck and controller

2 independent cooling circuits

+20C to +200C without chiller

Liquid Cooled

-20C to +200C -40C to +200C -60C to +200C

High Power Testing – Why Liquid Cooling?

Cooling with air Maximu What power do we need to test at -40°C $\varsigma_{AIR} =$ Thermal Load $c_{AIR} =$ Heat Exchanger ^{m}AIR = $\Delta T_{\rm max}$ $P_{\text{max}} =$ As the id Coolant **100W** to Inflow: -80°C Heat Up ΔT max. =40K Coolant Outflow: -40°C

Air-Coclad

Max. Cooling Capacity is lov

Effective Cooling Capacity is

 ΔT high – impact on temp.

High air-flow@high pressur

Liquid cooled systems are the tools of choice due to the high cooling power and better temp. uniformity!

)l/min dm^3 /(KgK)1g

Liquid Cooled

300W heat load applied by testing following lated

	$P_{load} = 600W$
/(KgK)	$c_{ZT130} = 1,1KJ/(KgK)$
0g	$m_{Zt13m} = 18000g$
=1,15K	$\Delta T = \frac{Q_{Last} \cdot t}{c \cdot m} = 2,35K$

igh at >3000W

mp. uniformity

consumption

quire other fluids

Active Temperature Control – MultiSense

Full Wafer Contact: Uniformly distributed thermal load - one control sensor is sufficient Smaller Contact Areas: Require multiple control sensors to detect temp changes Number of built-in sensors is limited due to chuck complexity – total of 9 control sensors MultiSense AddOn sensors is scalable, currently up to 21 sensors **Requires advanced temp control algorithms**

20x20mm

MultiSense vs. No MultiSense

+70°C, 200W, 21x22mm contact area, 2 min test time, liquid cooled

Test Time: 2 min

Uncontrolled temp rise to >96°C No temp change detection **No Active Temp Control**

Low Thermal Resistance Chuck Technology

Developed for High Power (HP) and High Accuracy (HA) Ap

Al devices, GPU's, CPU's, Stacked Memories, Heterogenou

Low Thermal Resistance chuck design w/ MultiSense Active

Scalable number of temp control sensors (e.g. 9 or 21 sense

Scalable cooling power options, upgradeable as needed (600W to >20KW) (temp range dependent)

plications	
	1
s integrated devices	4
e Temp Control	
ors)	
	6 Active Probe
	ALD Sensor Card Position
	25.12

Applications Examples

Full Wafer Contact DRAM, Flash, HBM

Contact Area: Large Parallelism: High

Power/Die: Low Density: Low (3W/cm²)

Heat transfer: up to 2000W Temp. Range: -40°C to +125°C

100x100mm E.g. Microcontroller

Contact Area: Medium Parallelism: Medium/Low Heat transfer: up to 1000

Heat transfer: up to 1000W Temp. Range: -40°C to +125°C

Power/Die: Medium/High Density: Medium (10W/cm²)

20x20mm E.g. 5G or GPU devices

Contact Area: Small Parallelism: Low

Power/Die: High Power Density: High (125W/cm²)

Heat transfer: up to 500W Temp. Range: -40°C to +125°C

Customer Study – Full Wafer Contact – 2000W

Full Wafer Contact – High Bandwidth Memory Testing

Applied power of 2000 Watts, uniformly distributed across the chuck

Liquid Chiller, -40°C, +25°C and +125°C

Chuck system is able to dissipate 2000W at all three temperatures

att-systems.com

Customer Study – 100x100mm – 400W

100x100mm contact area – Automotive microcontroller

Applied power of 400 Watts

Liquid Chiller, 0°C, +85°C and +105°C

Chuck system is able to dissipate 400W within a +/- 2°C temperature range

Customer Study – 21x20mm – 160W

21x20mm contact area – 5G Device

Applied power of 160 Watts

Liquid Chiller, 0°C and +105°C

Chuck system is able to dissipate 400W within a +/- 2°C temperature range

Summary

High Power Dissipation requires Liquid Cooled Systems

Full Wafer Contact up to 2KW – doable

100x100mm up to 400W – doable (higher power possible with stronger chillers)

21x20mm up to 160W – doable (higher power possible with stronger chillers)

-40°C to +125°C covered with single fluid - Wider temp range requires new fluids (high BP and low viscosity) or

Dedicated test cells for certain temperature ranges (e.g. -60°C to +25°C; +25°C to +150°C)

Wafer test requirements are changing dynamically – Power densities, Parallelism, IC complexity

ATT is working on new chuck concepts addressing future requirements – Please contact us for more details

THANK YOU