Modulated Scatter Array Measurements and Signal Processing from UHF to THz

Rick Campbell, Nasr Alkhafaji and Madeleine Roche Portland State University

COMP/\SS 2018

What is Modulated Scattering?

COMP/\SS 2018

Important Basics

Modulation is slow: Hz and kHz, not THz

Modulation gives a particular target a unique signature

Profound signal to noise advantage

COMP/\SS 2018

Proposed On Wafer Measurement Application

All semiconductor junctions may be modulated with light, so even things that aren't designed for modulated scatter measurements might be tested.

COMP/\SS 2018

Really Cool Stuff

Size of modulation target: how well can you focus and position the laser?

At 500 GHz $\lambda/4$ is 150 μ m so easy to get good scattering from on-chip structures

No mechanical contact to wafer

The modulator picks the target, so the RF source and receiver may have broad antenna beamwidths

COMP/\SS 2018

Really Hard Stuff

Receiver needs to reject specular reflection and just see modulated beam kHz away Receiver and source need to have the same reference for frequency stability Even if the receiver and transmitter have the same reference, phase noise will kill you This may now be feasible above 100 GHz

COMP/\SS 2018

An enhancement: What if...

The departure angle of the modulated scatter signal could be different from both the arrival angle and the unmodulated specular reflection?

"Space-angle modulation"

Our current work in the PSU lab

COMP/\SS 2018

Possible On-Wafer Implementation

COMP/\SS 2018

Detail

COMP/\SS 2018

Theory is good, sketches look nice, but...

We need a proof of concept experiment

First, a scale model:

500 GHz to 500 MHz

Multiply all dimensions by 1000

1 mm scales to 1 m

COMP/\SS 2018

Instead of on-wafer, in Anechoic Chamber

COMP/\SS 2018

4 element 432 MHz array in Chamber

Each element has a single diode turned on and off by baseband audio I Q signals

COMP/\SS 2018

Modulation from a single element

COMP/\SS 2018

Modulation from a single element

COMP/\SS 2018

4 element Upper Sideband Modulator

4 phase: I, Q, inverse I, inverse Q

Note cancellation of even order distortion

COMP/\SS 2018

Can do lots more elements in array

Fourier Theory, the more elements, the narrower the desired beam,

and/or the lower the distortion products

Note: specular beam and all other products are present, they just radiate in different directions. "Space-Angle Modulation"

Now, work up the frequency spectrum until dimensions are wafer scale

COMP/\SS 2018

Next Step: scale to higher frequency: 2.3 GHz

COMP/\SS 2018

Requires all new RF to Baseband hardware

COMP/\SS 2018

Most of our work is not on wafer, some outdoors

marine environment instrumentation packaging

COMP/\SS 2018

Next

Next:

Scale Model proof-of-concept experiments completed at 432 MHz and 2.3 GHz

COMP/\SS 2018

Thank you to you all, and special thanks to

Nasr Alkhafaji

Finishing his PhD, who built and measured all the 2.3 GHz arrays and made the measurements

Madeleine Roche

Finishing her MS, who worked on all the 432 MHz arrays and has been an essential part of the 2.3 GHz team

COMP/\SS 2018